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Simulation of Ground Motion Using the Stochastic Method

By David M. Boore

Abstract — A simple and powerful method for simulating ground motions is to combine
parametric or functional descriptions of the ground motion’s amplitude spectrum with
a random phase spectrum modified such that the motion is distributed over a duration
related to the earthquake magnitude and to the distance from the source. This method
of simulating ground motions often goes by the name “the stochastic method”. It is
particularly useful for simulating the higher-frequency ground motions of most interest
to engineers (generally, f > 0.1 Hz), and it is widely used to predict ground motions for
regions of the world in which recordings of motion from potentially damaging earthquakes
are not available. This simple method has been successful in matching a variety of ground-
motion measures for earthquakes with seismic moments spanning more than 12 orders of
magnitude and in diverse tectonic environments. One of the essential characteristics of the
method is that it distills what is known about the various factors affecting ground motions
(source, path, and site) into simple functional forms. This provides a means by which the
results of the rigorous studies reported in other papers in this volume can be incorporated
into practical predictions of ground motion.

Introduction

Keiiti Aki was one of the first seismologists to derive an expression for the spectrum
of seismic waves radiated from complex faulting. In a 1967 paper (Aki, 1967) he used
assumptions about the form of the autocorrelation function of slip as a function of space
and time to derive an ω-square model of the spectrum (and he coined the term “ω-square
model” in that paper). He then used the assumption of similarity to derive a source-scaling
law, showing that the spectral amplitude at the corner frequency goes as the inverse-cube
power of the corner frequency. He explicitly recognized that this is a constant-stress-drop
model. His work has been used knowingly and unknowingly by several generations of
seismologists to predict ground motions for earthquakes, particularly at high frequencies
where the space- and time-distribution of fault slip is complicated enough to warrant a
stochastic description of the source. Usually these predictions are for a specified seismic
moment, and this is another place in which Kei’s work had a long-term impact: in 1966
(Aki, 1966) he determined the seismic moment of an earthquake for the first time and
also explicitly related the seismic moment to the product of rigidity, slip, and fault area.
His research on the shape and scaling of source spectra and on seismic moment form the
basis for the method for simulating ground motions discussed in this paper. In recognition
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of its use of a partially stochastic, rather than a completely deterministic, description of
the source and path, this method is often referred to as “the stochastic model” or “the
stochastic method”. A word about terminology may be in order here: I refer to the means
of simulating ground motions as the “stochastic method”, whereas a particular application
of the method results in a “stochastic model” of the ground motion (often associated
with a particular study, such as the Frankel et al. (1996) model). The terminology is not
standardized, however, and more usually (and loosely) people refer to any application of the
stochastic method as the stochastic model; the distinction between the two is important,
because the ground motions for different applications of the method (different models)
might be very different.

There are several methods that use stochastic representations of some or all of the
physical processes responsible for ground shaking (e.g., Papageorgiou and Aki, 1983a; Zeng
et al., 1994). In this paper I review the particular stochastic method that I and a number of
others developed in the last several decades. The paper includes a few new figures and an
improvement in the calculation of random vibration results that previously appeared only
in an USGS open-file report (Boore, 1996). Other authors have published papers applying
the stochastic method and extending the method in various ways. Table 1 contains a
partial list of papers primarily concerned with development of the method; a table of
references applying the method is given later.

Most of the discussion assumes that the motions to be simulated are S-waves— these
are the most important motions for seismic hazard. The method can be modified to
simulate P -wave motions, as was done in Boore (1986).

The Essence Of The Method

The stochastic method described in this paper has its basis in the work of Hanks
and McGuire, who combined seismological models of the spectral amplitude of ground
motion with the engineering notion that high-frequency motions are basically random
(Hanks, 1979; McGuire and Hanks, 1980; Hanks and McGuire, 1981). Assuming that
the far-field accelerations on an elastic halfspace are band-limited, finite-duration, white
Gaussian noise, and that the source spectra are described by a single corner-frequency
model whose corner frequency depends on earthquake size according to the Brune (1970,
1971) scaling, they derived a remarkably simple relationship for peak acceleration that was
in good agreement with data from 16 earthquakes. I generalized their work to allow for
arbitrarily complex models, extended it to the simulation of time series, and considered
many measures of ground motions, the most important of which are response spectra
(Boore, 1983). The underlying simplicity of the method, however, remains unchanged.
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The essence of the method is shown in Figure 1: the top of the figure shows the spectrum
of the ground motion at a particular distance and site condition for magnitude 5 and
7 earthquakes, based on a standard seismological model; by assuming that this motion
is distributed with random phase over a time duration related to earthquake size and
propagation distance, the time series shown in the bottom of the figure are produced.

The essential ingredient for the stochastic method is the spectrum of the ground
motion — this is where the physics of the earthquake process and wave propagation
is contained, usually encapsulated and put into the form of simple equations. Most of
the effort in developing a model is in describing the spectrum of ground motion. As
is traditional, I find it convenient to break the total spectrum of the motion at a site
(Y (M0, R, f)) into contributions from earthquake source (E), path (P ), site (G), and
instrument or type of motion (I), so that

Y (M0, R, f) = E(M0, f)P (R, f)G(f)I(f), (1)

where M0 is the seismic moment, introduced into seismology in 1966 by K. Aki (Aki,
1966). I usually use moment magnitude M rather than seismic moment as a more familiar
measure of earthquake size; there is a unique mapping between the two:

M =
2
3

log M0 − 10.7 (2)

(Hanks and Kanamori, 1979).

Seismic moment has a number of advantages as the predictor variable for earthquake
size in applications:

• It is the best single measure of overall size of an earthquake and is not subject to
saturation

• It can be determined from ground deformation or from seismic waves

• It can be estimated from paleoseismological studies

• It can be related to slip rates on faults

• It is the variable of choice for empirically and theoretically based equations for the
prediction of ground motions.

By separating the spectrum of ground motion into source, path, and site components,
the models based on the stochastic method can be easily modified to account for specific
situations or to account for improved information about particular aspects of the model.
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The Source (E(M0, f))

Both the shape and the amplitude of the source spectrum must be specified as a
function of earthquake size. This is the most critical part of any application of the method.
References given later should be consulted to see how various authors have approached this
issue. The most commonly used model of the earthquake source spectrum is the ω-square
model, a term coined by Aki (1967). Figure 2 shows this spectrum for earthquakes of
moment magnitude 6.5 and 7.5. The scaling of the spectra from one magnitude to another
is determined by specifying the dependence of the corner frequency f0 on seismic moment.
Aki (1967) recognized that assuming similarity in the earthquake source implies that

M0f
3
0 = constant, (3)

where the constant can be related to the stress drop (∆σ). Following Brune (1970, 1971),
the corner frequency is given by the following equation:

f0 = 4.9 × 106βs(∆σ/M0)1/3, (4)

where f0 is in Hz, βs (the shear-wave velocity in the vicinity of the source) in km/s, ∆σ

in bars, and M0 in dyne-cm.

Although the ω-square model is widely used, in practice a variety of other models have
been used with the stochastic method. Figure 3 shows a number of those that have been
used to predict ground motions in eastern North America. It turns out that the source
spectra for all of the models can be given by the following equation:

E(M0, f) = CM0S(M0, f), (5)

where C is a constant, given below, and S(M0, f) is the displacement source spectrum,
given by the equation

S(M0, f) = Sa(M0, f) × Sb(M0, f), (6)

and Sa, Sb for the various models shown in Figure 3 are given in Table 2. The moment
dependence of the two factors Sa and Sb is given by the relations between the corner
frequencies fa and fb appearing in the factors and the seismic moment, as shown in Table
3 (which also contains the scaling for the Atkinson and Silva, 2000, model for California;
a number of illustrations later in the paper use their model). The constant C in equation
(5) is given by

C = 〈RΘΦ〉V F/(4πρsβ
3
sR0), (7)

where 〈RΘΦ〉 is the radiation pattern, usually averaged over a suitable range of azimuths
and take-off angles (Boore and Boatwright, 1984), V represents the partition of total shear-
wave energy into horizontal components (= 1/

√
2), F is the effect of the free surface (taken
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as 2 in almost all applications, which strictly speaking is only correct for SH waves), ρs

and βs are the density and shear-wave velocity in the vicinity of the source, and R0 is a
reference distance, usually set equal to 1 km. In applications, care must be taken if mixed
units are used. For example, if ground motion is to be in cm and ρs, βs, and R0 are in
units of gm/cc, km/s and km, respectively, then C in equation (7) should be multiplied
by the factor 10−20. It is probably safer to convert all quantities into common units.

The Path (P (R, f), duration)

Now that the source has been specified, it remains to discuss the other components of
the process that affect the spectrum of motion at a particular site. The next component
is the path effect. For some applications involving a specific path from source to site it
might be desirable to convolve the radiation from the source with theoretically calculated
path effects. An example of calculated path response is shown in Figure 4 for a four-layer
model of the crust in the central United States. The response is complicated because
of the critical-angle arrivals and reverberations of the waves. Even though complicated,
however, the response is probably simpler than reality because the crust may not be
laterally uniform and because scattering has not been included. For most applications
it is advisable to represent the effects of the path by simple functions that account for
geometrical spreading, attenuation (combining intrinsic and scattering attenuation), and
the general increase of duration with distance due to wave propagation and scattering.

The simplified path effect P is given by the multiplication of the geometrical spreading
and Q functions

P (R, f) = Z(R) exp [−πfR/Q(f)cQ], (8)

where cQ is the seismic velocity used in the determination of Q(f), and the geometrical
spreading function Z(R) is given by a piecewise continuous series of straight lines:

Z(R) =





R0
R

R ≤ R1

Z(R1)
(

R1
R

)p1

R1 ≤ R ≤ R2

...
Z(Rn)

(
Rn

R

)pn

Rn ≤ R.

(9)

In applications, R is usually taken as the closest distance to the rupture surface, rather
than the hypocentral distance. In some applications it may be appropriate to include
a period and/or moment dependent “pseudo-depth” h in a manner consistent with the
effectively point-source models used in fitting empirical strong-motion data. For example,
following Boore et al. (1997) R would be given by R =

√
D2 + h2, where D is the closest
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distance to the vertical projection of the rupture surface onto the ground surface, and h is
taken from the empirical results in Boore et al. (1997). Other empirically-based prediction
equations use different relations to determine the distance— see the review by Campbell
(2002)— but the idea is the same. By defining R in this way rather than as hypocentral
distance, the method is more applicable to extended ruptures. As an example of Z(R),
Figure 5 shows the three-segment geometrical spreading operator used in Atkinson and
Boore’s (1995) predictions of ground motions in eastern North America. For this example,
R0 = 1, R1 = 70, p1 = 0.0, R2 = 130, and p2 = 0.5.

The form of the attenuation operator is motivated by K. Aki’s compilation of seismic
attenuation Q shown in Figure 6. As a simple way of capturing the variation of Q, the
attenuation operator is made up of three piecewise-continuous line segments (Figure 7).
The outer lines are specified by slopes and intercepts at specified reference frequencies,
and the middle line joins the outer lines between frequencies ft1 and ft2. In applications
the various parameters describing the attenuation operator can be obtained from analysis
of weak-motion data, if available. If determined from data, it is important to keep in mind
the tradeoffs between geometrical spreading and attenuation. Both functions are needed
in fitting data, and for consistency, the same functions must be used in applications. An
example of the combined path effect is shown in Figure 8, which compares observed spectral
amplitudes as a function of distance with geometrical spreading and attenuation operators
fit to the data. In this case the geometrical spreading function is that shown in Figure 5,
and the Q function is given by Q = 680f0.38, which is the s2 branch in Figure 6 (the data
were not sufficient to determine the longer-period s1 branch).

The distance-dependent duration is an important function, for the peak motions
decrease with increasing duration, all other things being equal. Although the Fourier
amplitude spectrum of the ground motion (equation (1)) is not dependent on the duration,
I include a discussion of duration here because it is a function of the path, as well as the
source; the way it is used in the calculations of ground motion is given later. The ground-
motion duration (Tgm) is the sum of the source duration, which is related to the inverse of
a corner frequency (e.g., 0.5/fa for the AB95 and 1/fa for the Fea96 models in Tables 2
and 3) and a path-dependent duration. Empirical observations and theoretical simulations
suggest that the path-dependent part of the duration can be represented by a connected
series of straight-line segments. The function used in Atkinson and Boore (1995) is shown
in Figure 9, along with the data from which the function was determined.

The Site (G(f))

In the strictest sense, the modification of seismic waves by local site conditions is
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part of the path effect. Because local site effects, however, are largely independent of the
distance traveled from the source (except for nonlinear effects for which the amplitudes of
motion are important), it is convenient to separate site and path effects. Much effort can
go into accounting for the modifications of the ground motion due to local site geology.
This is a situation where site-specific effects might best be used. On the other hand, in
many cases the simulations from the stochastic method are intended to be used for the
prediction of motion at a generic site— such as a generic rock or a generic soil site. In such
cases, a simplified function can be used to describe the frequency-dependent modifications
of the seismic spectrum. I find it convenient to separate the amplification (A(f)) and
attenuation (D(f)), as follows:

G(f) = A(f)D(f). (10)

The amplification function A(f) is usually relative to the source unless amplitude variations
due to wave propagation, separate from the geometrical spreading, have been accounted
for. In contrast, the diminution function D(f) is used to model the path-independent loss
of energy (the path-dependent part is modeled by the exponential function in equation
(8)). It is important in applications to be specific about the reference conditions for the
A and D functions. In general, G can be a function of the amplitude of shaking, but I
do not account for nonlinear effects in my method, preferring to compute rock motions
using a linear model and account for nonlinear effects as part of an additional site-response
calculation. W. Silva, however, has incorporated nonlinear effects into his version of the
stochastic method (Silva et al., 1991).

The starting point for deriving the amplification A(f) is a function of shear-wave
velocity vs. depth. Figure 10 shows such a function for a generic rock site appropriate
for coastal California. The top 100 m is based on averaging of travel times measured in
boreholes, while the deeper parts of the curve are based on judgment and a few data (Boore
and Joyner, 1997). The amplification A(f) can be given by wave-calculation solutions
that account for reverberations, or approximately and more simply by assuming that the
amplification of the waves is given by the square root of the impedance ratio between the
source and the surface. The algorithm is the following:

A(f(z)) =
√

Zs/Z̄(f), (11)

where the seismic impedance near the source (Zs) is given by

Zs = ρsβs, (12)

and ρs and βs are the density and shear-wave velocity near the source. Z̄(f) is an average of
near-surface seismic impedance; it is a function of frequency because it is a time-weighted
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average from the surface to a depth equivalent to a quarter wavelength:

Z̄(f) =
∫ t(z(f))

0

ρ(z)β(z)dt/

∫ t(z(f))

0

dt, (13)

in which the upper limit of the integral is the time for shear waves to travel from depth z(f)
to the surface. The depth is a function of frequency and is chosen such that z is a quarter-
wavelength for waves traveling at an average velocity given by β̄ = z(f)/

∫ z(f)

0
[1/β(z)]dz.

The condition of a quarter-wavelength z = (1/4)β̄/f then yields the following implicit
equation for z(f):

f(z) = 1/[4
∫ z(f)

0

1
β(z)

dz]. (14)

In practice, it is easiest to compute f and Z̄ for a given z. By changing variables from
time to depth, equation (13) becomes

Z̄(f) =
∫ z(f)

0

ρ(z)dz/

∫ z(f)

0

1
β(z)

dz. (15)

Equation (15) can be simplified to
Z̄(f) = ρ̄β̄, (16)

where

ρ̄ =
1

z(f)

∫ z(f)

0

ρ(z)dz, (17)

and

β̄ = z(f)

[∫ z(f)

0

1
β(z)

dz

]−1

. (18)

Figure 11 compares the amplification computed using equation (11) for the generic
rock velocity profile in Figure 10 and wave propagation for two angles of incidence. For
application, it is convenient to approximate the amplification by a series of connected line
segments; these are also shown in Figure 11.

The attenuation, or diminution, operator D(f) in equation (10) accounts for the path-
independent loss of high-frequency in the ground motions. This loss may be due to a source
effect, as suggested by Papageorgiou and Aki (1983b) or a site effect, as suggested by a
number of authors, including Hanks (1982), or by a combination of these effects. If a
source effect, D may also depend on the size of the earthquake. It is not my intention to
argue for a particular cause, but only to point out that a simple multiplicative filter can
account for the diminution of the high-frequency motions. Two filters are in common use:
the fmax filter

D(f) =
[
1 + (f/fmax)8

]−1/2
, (19)
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(Hanks, 1982; Boore, 1983), and the κ0 filter

D(f) = exp(−πκ0f), (20)

(Anderson and Hough, 1984). Of course, both filters can be combined in an application.

The combined effect of amplification and attenuation for a series of diminution
parameters κ0 is shown in Figure 12 for a generic rock site in coastal California.
Comparisons with data suggest that κ0 near 0.04 is appropriate (Boore and Joyner, 1997).
Filters for other types of site geology can be obtained by combining the results in Figure
12 with the site effects from empirical attenuation curves. The results are shown in Figure
13 (for more detail, see Boore and Joyner, 1997).

Accounting for Type of Ground Motion (I(f))

The particular type of ground motion resulting from the simulation is controlled by
the filter I(f). If ground motion is desired, then

I(f) = (2πfi)n, (21)

where i =
√
−1 and n = 0, 1, or 2 for ground displacement, velocity, or acceleration,

respectively. For the response of an oscillator, from which response spectra or Wood-
Anderson magnitudes can be derived,

I(f) =
−V f2

(f2 − f2
r ) − 2ffrζi

, (22)

for an oscillator with undamped natural frequency fr, damping ζ, and gain V (for
computation of response spectra, V = 1).

Integral Measures of Ground Motion

Measures of ground motion based on some average of the motion over time or of the
spectrum over frequency are sometimes used in seismic hazard (e.g., Jibson, 1993; Jibson
et al., 1998; Wilson, 1993). The most common of these may be the Arias intensity (Ixx),
defined as

Ixx ≡ π

2g

∫ td

0

a(t)2dt, (23)

where g is the acceleration of gravity, a is the ground acceleration, and td is the duration
of the motion (Arias, 1970). This intensity measure can be easily computed within the
context of the stochastic method, as shown below.
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Obtaining Ground Motions

Given the spectrum of motion at a site, there are two ways of obtaining ground
motions: 1) time-domain simulation and 2) estimates of peak motions using random
vibration theory.

Simulations Of Time Series

Time-domain simulations are easy to obtain. This is illustrated in Figure 14 for an
actual application, using the AS00 model as given in Tables 2, 3, and 4 (this model is
used for all but the last of the remaining figures). White noise (Gaussian or uniform)
is generated for a duration given by the duration of the motion (Figure 14a); this noise
is then windowed (Figure 14b); the windowed noise is transformed into the frequency
domain (Figure 14c); the spectrum is normalized by the square root of the mean square
amplitude spectrum (Figure 14d); the normalized spectrum is multiplied by the ground
motion spectrum Y (Figure 14e); the resulting spectrum is transformed back to the time
domain (Figure 14f). Şafak and Boore (1988) show that the order of windowing and
filtering is important; if the white noise is first filtered and then windowed the long-period
level of the motion is distorted.

The shaping window applied to the noise (Figure 14b) can be either a box window
or a window that gives a more realistic shape for the acceleration time series (as will be
shown shortly, the decision to use a shaped rather than a box window is based more on
aesthetics than on differences in the derived ground-motion parameters). By studying a
number of recorded motions, Saragoni and Hart (1974) found that the following function
is a good representation of the envelope of acceleration time series:

w(t; ε, η, tη, ) = a(t/tη)b exp(−c(t/tη)), (24)

where the parameters a, b, and c are determined such that w(t) has a peak with value of
unity when t = ε × tη and w(t) = η when t = tη (see Figure 15). The equations for a, b,
and c follow:

b = −(ε ln η)/[1 + ε(ln ε − 1)], (25)

c = b/ε, (26)

and
a = (exp(1)/ε)b. (27)

As discussed in Boore (1983), a can also be chosen such that the integral of the square
of w(t) equals unity; this is appropriate if the spectrum of the windowed noise is not
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normalized so that it has a mean square amplitude of unity. The time tη is given by

tη = fTgm
× Tgm, (28)

where Tgm is the duration of ground motion. Based on Saragoni and Hart (1974), I
use ε = 0.2 and η = 0.05 in applications. I find a good comparison between response
spectra computed using the box and exponential windows if fTgm

= 2.0. A comparison of
accelerations derived from the box and the exponential windows is given in Figure 16. Also
shown are the 5%-damped pseudo-velocity response spectra obtained from averaging the
response spectra computed from 640 simulated accelerations. It is clear that the response
spectra obtained from the two windows are similar.

In applications, it is most common to compute the ground acceleration (I(f) =
(2πf

√
−1)2 in equation (1)) and then derive other measures of ground motion from the

time series of ground acceleration. Figure 17 shows examples of various types of motion
for magnitude 4 and 7 earthquakes; magnitude was the only thing that changed in the
program input. Individual time series should be used with caution, however, for there is
no guarantee that the spectrum of each realization will be close to the “target” spectrum
Y (M0, R, f); it is only the mean of the individual spectra for a number of simulations
that will match the target spectrum. An example of this is shown in Figure 18, in which
the mean of the spectra from 640 realizations is almost indistinguishable from the target
spectrum, although the spectrum of a randomly chosen individual realization deviates
significantly from the mean at some frequencies.

It is important to note that the variability of ground-motion parameters obtained
from a suite of simulations does not represent the variability observed in real ground-
motion parameters. Simulating the observed variability requires running the simulations
for model parameters chosen from distribution functions for those parameters (see, e.g.,
EPRI, 1993)).

Peak Motions From Random Vibration Theory

A very rapid way of obtaining measures of peak motion (response spectra, peak
acceleration, peak velocity, peak displacement, peak response of instruments for magnitude
determination, Arias intensity, etc.) is to use random-vibration theory. In essence, random-
vibration theory provides an estimate of the ratio of peak motion (ymax) to rms motion
(yrms), and Parseval’s theorem is used to obtain yrms in terms of an integral of the squared
amplitude spectrum |Y |2, where |Y |2 contains the response of the particular measure of
ground motion (e.g., equation (21) or (22)) for which peak values are desired.
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The ratio of peak to rms motion is given by equations from Cartwright and Longuet-
Higgins (1956), who used the analysis in Rice (1954) to develop a method for predicting
extrema of ocean waves from spectral characteristics of a continuous record of sea heights.
In order to use their results for the extrema of transient earthquake ground motions, I had
to pay special attention to the definition of duration used in the equations, as described
below.

After a change of variable to remove an integrable singularity, Cartwright and Longuet-
Higgins’ (1956) equation (their equation (6.8)) for the ratio of peak to rms motion is

ymax

yrms
= 2

∫ ∞

0

{1 − [1 − ξ exp(−z2)]Ne}dz, (29)

where
ξ =

Nz

Ne
, (30)

and Nz, Ne are the number of zero crossings and extrema, respectively (extrema correspond
to all places where the first derivative of the time series equals zero; for a broadband
function, there can be numerous local extrema). For large N

ymax

yrms
= [2 ln(Nz)]1/2 +

0.5772
[2 ln(Nz)]1/2

. (31)

The integral in equation (29) is well-behaved numerically, and therefore in my applications
it, rather than the asymptotic equations in equation (31), is used.

In the equations above, the number of zero crossings and extrema are related to the
frequencies of zero crossings (fz) and extrema (fe) and to duration (T ) by the equation

Nz,e = 2f̃z,eT, (32)

where the frequencies are given by

f̃z =
1
2π

(m2/m0)1/2, (33)

and
f̃e =

1
2π

(m4/m2)1/2. (34)

In these equations, mk, k = 0, 2, 4 are moments of the squared spectral amplitude. These
play a fundamental role in random vibration theory and are defined for any integer k as

mk = 2
∫ ∞

0

(2πf)k|Y (f)|2df, (35)
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where the spectrum Y is given by equation (1) and includes the specific type of ground
motions, as specified by equations (21) or (22). yrms is simply

yrms = (m0/T )1/2. (36)

Being an integral of the squared acceleration, the Arias intensity is closely related to
the 0th spectral moment:

Ixx =
π

2g
m0. (37)

Seismic waves from earthquakes are inherently nonstationary, and the response of
resonant systems (local site layering or mechanical oscillators) to those waves will have
significant correlation between adjacent peaks. Both of these characteristics violate basic
assumptions of the random vibration theory just discussed. Despite this, the theory works
very well in predicting ground motions, although some simple refinements are needed
for oscillator response when the oscillator period is longer than the duration of ground
motion or for lightly damped oscillators, for which the response continues well past the
random ground-motion excitation. Examples of these cases, computed using time-domain
simulations, are shown in Figure 19. For the small earthquake, the 10-sec oscillator
response is almost equal to the ground displacement and has a short duration. On the
other hand, the response of the oscillator to the larger earthquake rings on for a duration
significantly in excess of the ground motion duration. The problem is in defining durations
to use in determining rms and in determining the number of cycles of quasi-stationary
motion to be used in the relation between ymax and yrms. Boore and Joyner (1984) found
that good results could be obtained if two durations were used: one duration (Trms) for
the computation of the rms in equation (36), and the other, smaller, duration for the
determination in equation (32) of the number of zero crossings (Nz) or extrema (Ne) used
in evaluating ymax/yrms. For the latter Boore and Joyner (1984) use the duration of ground
motion (Tgm), such as that shown in Figure 9. From considerations of oscillator response
and numerical experiments with time-domain simulations, they proposed the following
equation for the time Trms to be used in the computation of rms:

Trms = Tgm + To

(
γn

γn + α

)
, (38)

where γ = Tgm/To and the oscillator duration is given by To = 1/(2πfrζ). For small and
large earthquakes Trms approaches Tgm and Tgm + To, respectively, which is consistent
with the oscillator responses shown in Figure 19. The constants n and α were determined
from numerical experimentation, with values n = 3 and α = 1/3. Recently, Liu and
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Pezeshk (1999) have found somewhat better comparisons between time domain and random
vibration theory results by setting n = 2 and

α =
[
2π

(
1 − m2

1

m0m2

)]1/2

, (39)

where mi, i = 0, 1, 2 are given by equation (35). According to Liu and Pezeshk, equation
(39) accounts for the bandwidth of the ground motion. Comparisons of response spectra
computed using time-domain calculations (for 10, 40, 160, and 640 simulations) and
random-vibration calculations with both the Boore-Joyner and the Liu-Pezeshk oscillator
corrections are shown in Figures 20 and 21. The figures show good agreement between
the time-domain and the random-vibration theory calculations, with the Liu-Pezeshk
correction giving somewhat better answers for M 7 earthquake at periods between 5
and about 12 secs (Figure 21). The comparisons between the different ways of doing
the oscillator correction, however, is model- and period-dependent. For example, the
comparison in Liu and Pezeshk’s paper indicates that their correction is significantly better
than the Boore-Joyner correction for small earthquakes, which is a different conclusion than
obtained from the comparisons shown in Figure 20. Figures 20 and 21 also indicate that
more than 40 simulations may be required adequately capture the mean of the ground
motions.

Applications

The stochastic method has been widely applied, but rather than attempt to discuss
a number of specific applications, I have included in Table 5 a fairly comprehensive
list of applications, separated by primary geographic region. There are many ways in
which the stochastic method has been used, and the effectiveness of the method has
been demonstrated by fitting observations ranging from negative-magnitude rockbursts to
great earthquakes at teleseismic distances. Calibrations of the method, which may involve
finding the parameters so as to fit empirically-derived equations for predicting ground
motions, and validations of the method, which consist of checking predictions against
data (but not the same data used in deriving the necessary parameters) are included
in a number of the references. The method can be used in absolute or relative senses.
For example, predicting ground shaking going from the source to the site is an absolute
prediction, whereas predicting the ratio of ground shaking for two source models is a
relative prediction. Examples of both of these uses are given in Figure 22 — an admittedly
complicated figure, but one which makes a number of points; see Boore (1999) for details.
In Figure 22 the circles are absolute predictions of response spectra for magnitude 5.6
and 7.6 earthquakes using the stochastic method. For comparison, the dashed lines are
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response spectra from empirical analyses of data, and the heavy solid line for M = 5.6 is
the observed spectrum for a recording of the 1990 Upland, California, earthquake; the light
solid line is the response spectrum computed for just the S-wave portion of the record,
and excludes the longer-period surface waves. The absolute predictions for M = 5.6 are
in reasonable agreement with the observations for shorter periods and for longer periods
when the surface waves are excluded; the mismatch for longer-period response spectra
obtained from the whole record is due to the lack of the surface waves in the stochastic
method, which is a limitation of the method as usually applied. The heavy solid line
for M = 7.5 is based on the observed spectrum of the smaller earthquake, corrected by
the relative difference of motions for magnitude 7.5 and 5.6 earthquakes, as predicted by
the stochastic method. The relative prediction of ground motions has also been used by
Campbell (1999) in the hybrid prediction of ground motions in eastern North America, in
which he uses the stochastic method to modify empirically derived western U.S. ground
motions for differences in source, propagation, and site.

Other general areas in which the stochastic method has been applied include:

• Generate suites of ground motions for many magnitudes and distance, and use these
to derive ground-motion prediction equations and tables of motion. This is the basis
for the CEUS motions used in the U.S. National Hazard Maps.

• Use as a basis for design-motion specification of critical structures.

• Find parameters controlling spectral content (e.g., ∆σ, κ).

• Use in parameter sensitivity studies

• Relate time-domain measures of ground motion to frequency-domain descriptions.

• Generate time series for use in nonlinear analyses (structural, site response, landslides,
liquefaction).

• Use to compute subfault motions in simulations of extended ruptures.

One topic I have not discussed is that of uncertainties in the predictions; this has
been a major focus of a study by EPRI (1993) (see also Silva, 1992; Toro et al., 1997). An
example of this uncertainty was shown in Figure 3, which displays the range of Fourier
spectra for predictions of ground motions in eastern North America (the variations in
predicted ground motions are similar to the variations in Fourier spectra). Atkinson and
Boore (1998) showed that the Atkinson and Boore (1995) model best fits response spectra
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computed from earthquake records in eastern North America and from other tectonically
comparable areas. More than half of the events providing data used in the comparisons,
however, had magnitudes less than or equal to 5. For this reason uncertainty exists in how
applicable any one of the proposed source models would be in predicting ground motions
from earthquakes in eastern North America large enough to constitute significant seismic
hazard. A sensible way of dealing with this uncertainty is to base hazard calculations on a
weighted average of ground motions from a number of the proposed source models (but all
calculations still employ the stochastic-method simulations). The choice of weights then
becomes the issue; this topic has been dealt with for eastern North America by expert
elicitations (Savy et al., 1998) using the concepts discussed in Budnitz et al. (1997, 1998)
and for the development of the National Hazard Maps by informed subjective opinion,
based on a series of regional workshops (e.g., Frankel et al., 1996 (currently being updated
— see http://geohazards.cr.usgs.gov/eq/)).

Limitations And Improvements

Comparisons of stochastic-method predictions with empirically-determined ground
motions indicates that the stochastic method is useful for simulating mean ground
motions expected for a suite of earthquakes having a specified magnitude and fault–
station distance. Care must be used, however, when the method is used to simulate
site-specific and earthquake-specific ground motions. As described in this paper, the
method does not include any phase effects due to the propagating rupture and to the
wave propagation enroute to the site (including local site response). In addition, the
differences between the various components of motion and different wave types are ignored.
For these reasons, fault-normal effects, phase differences over horizontal distances, spatial
correlations, directivity, etc. are not captured by the simulated motions. It should be
possible to include some of these effects in the method, and I am aware of some efforts
along these lines (e.g., Loh, 1985; Loh and Yeh, 1988; Tamura et al., 1991; Tamura and
Aizawa, 1992).

As noted before (Figure 18), the Fourier spectrum of each time series realization may
diverge from the “target” Fourier spectrum Y (M0, R, f). For this reason, when the method
is used to simulate a suite of time series for use in engineering design, it is important to
check the Fourier or response spectrum of each simulation to be sure that it does not
deviate too far from the desired spectrum. In practice, this will mean choosing the best
subset from a number of simulations. This approach has been used by Wen and Wu (2001)
and by Harmsen (2002), both of whom used the similarity to a specified response spectrum
as the basis for choosing the time series (but the two papers used different “goodness-of-fit”
criteria).
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The method also assumes stationarity of the frequency content with time. As the
example in Figure 22 shows, this is a poor assumption for situations, such as deep
sedimentary basins (e.g., Joyner, 2000), where long-period surface waves occur. It should
be possible to incorporate these waves into the method.

The duration in applications of the method is independent of frequency. Raoof et al.
(1999), however, find that duration is frequency-dependent. Modifications of the method
to account for frequency-dependent duration would be relatively easy for time-domain
simulations (simulating the motions for a series of narrow-band filters), but might be more
difficult for simulations of motions using random-vibration theory.

An apparent limitation often expressed is that most of the models based on the
stochastic method are fundamentally point-source models. This may not be as important
a limitation as might at first be thought. Although it is true that near- and intermediate-
field terms are lacking, in most applications the frequencies are high enough that the
far-field terms dominate, even if the site is near the fault. Furthermore, the effects of a
finite-fault averaged over a number of sites distributed around the fault (to average over
radiation pattern and directivity effects) can be captured in several ways: 1) using the
closest distance to faulting (as is done in empirically derived ground-motion prediction
equations) as the source-to-site distance; 2) using a two-corner source spectrum (Atkinson
and Silva, 2000); 3) allowing the geometrical spreading to be magnitude dependent (Silva
et al., 2002). In addition, it should be possible to extend the method to account for specific
fault-station geometries in a simple way, perhaps combining the simple computation of
envelopes of acceleration (Midorikawa and Kobayashi, 1978; Cocco and Boatwright, 1993)
with statistical descriptions of the source (e.g., Lomnitz-Adler and Lund, 1992; Herrero
and Bernard, 1994; Joyner, 1995; Bernard et al., 1996; Hisada, 2000). The overriding
philosophy of such an effort would be to capture the essence of motions from an extended
rupture without sacrificing the conceptual simplicity of the stochastic method.

Conclusions

The stochastic method is a simple, yet powerful, means for simulating ground
motions. It is particularly useful for obtaining ground motions at frequencies of interest
to earthquake engineers, and it has been widely applied in this context.

My source codes, written in Fortran, and executables that can be used on a PC
can be obtained from my web site (http://quake.usgs.gov/˜boore) or via anonymous
ftp on samoa.wr.usgs.gov in directory get. Programs are included both for time-
domain and for random-vibration simulations. The user should download the files
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README.TXT, SMSIMxxx.ZIP, SITEAxxx.ZIP, and SMSIM MANUAL.PDF where
“xxx” is the current version number, and follow the instructions in README.TXT to
extract and to use the programs. SMSIM MANUAL.PDF contains the latest revision
of the manual for the program (Boore, 2000). The manual is also available online at
http://geopubs.wr.usgs.gov/open-file/of00-509/.
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Ólafsson, S. and R. Sigbjörnsson (1999). A theoretical attenuation model for earthquake-
induced ground motion, J. Earthq. Eng. 3, 287–315.

– 31 –



** Pure and Applied Geophysics (in press) **
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Table 1. Some references on methodology

Beresnev and Atkinson (1997, 1998a), Boore (1983, 1984, 1989b, 1996, 2000), Boore and
Joyner (1984), Campbell (1999), Cartwright and Longuet-Higgins (1956), Correig (1996),
Erdik and Durukal (2001), Ghosh (1992), Hanks and McGuire (1981) Herrmann (1985),
Joyner (1984, 1995), Joyner and Boore (1988), Kamae and Irikura (1992), Kamae et al.
(1998), Koyama (1997), Lam et al. (2000), Liao and Jin (1995), Liu and Pezeshk (1998,
1999), Loh and Yeh (1988), Miles and Ho (1999), Ólafsson and Sigbjörnsson (1999), Ou and
Herrmann (1990a, 1990b), Papageorgiou and Aki (1983a), Pezeshk et al. (2001), Rathje
et al. (1998), Sabetta and Pugliese (1996), Şafak and Boore (1988), Schneider et al. (1991),
Shapira and Van Eck(1993), Silva (1992), Silva and Lee (1987), Silva et al. (1988, 1990,
1997), Tamura et al. (1991), Wennerberg (1990), Yu et al. (1993), Zeng et al. (1994)
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Table 2. Shape of source spectra (S(f) = Sa(f) ∗ Sb(f))

Model† Sa Sb

BC92 f < fa : 1
1

(1 + (f/fb)2)1/2

f ≥ fa : fa/f

AB95
1 − ε

1 + (f/fa)2
+

ε

1 + (f/fb)2
1

Fea96*
1

1 + (f/fa)2
1

H96
1

(1 + (f/fa)8)1/8

1
(1 + (f/fb)8)1/8

J97
1

(1 + (f/fa)2)3/4

1
(1 + (f/fb)2)1/4

AS00
1 − ε

1 + (f/fa)2
+

ε

1 + (f/fb)2
1

† The references to the models are as follows: BC92 = Boatwright and Choy (1992); AB95
= Atkinson and Boore (1995); Fea96 = Frankel et al. (1996); H96 = Haddon (1996); J97
= Joyner (1997), as modified in a written communication to D. Boore; AS00 = Atkinson
and Silva (2000) for California.

* This is the ω-square model.
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Table 3. Corner frequencies and moment ratios

Model log fa log fb log ε

BC92 M ≥ 5.3:†

3.409 − 0.681M 1.495 − 0.319M −

M < 5.3:

2.452 − 0.5M 2.452 − 0.5M −

AB95 M ≥ 4.0:‡

2.41 − 0.533M 1.43 − 0.188M 2.52 − 0.637M

M < 4.0:

2.678 − 0.5M 2.678 − 0.5M 0.0

Fea96* 2.623 − 0.5M − −

H96 2.3 − 0.5M 3.4 − 0.5M −

J97 2.312 − 0.5M 3.609 − 0.5M −

AS00 M ≥ 2.4:‡

2.181 − 0.496M 2.41 − 0.408M 0.605 − 0.255M

M < 2.4:

1.431 − 0.5(M− 2.4) 1.431 − 0.5(M− 2.4) 0.0

† The specified magnitude corresponds to the point at which fa = fb.

‡ The specified magnitude corresponds to the point at which ε = 1.0

* This is the ω-square model, for which log f0 = 1.341 + log(β(∆σ)1/3) − 0.5M, with
β = 3.6 km/s and ∆σ = 150 bars.
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Table 4. Parameters for AS00 model (from Atkinson and Silva, 2000)

• ρs, βs, V, 〈RΘΦ〉, F , R0: 2.8, 3.5, 0.707, 0.55, 2.0, 1.0

• Geometrical spreading (including factors to insure continuity of function):

r < 40 km : 1/r

40 km ≤ r : (1/40)(40/r)0.5

• Q, cQ: 180f0.45, 3.5 km/s

• Source duration: 0.5/fa

• Path duration: 0.05R

• Site amplification: Boore and Joyner (1997) generic rock (as shown in Figure 11).

• Site diminution parameters (fmax, κ): 100.0, 0.030

– 43 –



** Pure and Applied Geophysics (in press) **

Table 5. Some references for applications of the stochastic method

Western North America

Anderson and Lei (1994), Atkinson (1995, 1997), Atkinson and Boore (1997b), Atkinson
and Cassidy (2000), Atkinson and Silva (1997, 2000), Aviles and Perez-Rocha (1998), Ben-
Zion and Zhu (2002), Beresnev (2002), Beresnev and Atkinson (1998b), Boore (1986a, 1995,
1999), Boore and Joyner (1997), Boore et al. (1992), Chin and Aki (1991, 1996), Hanks
and Boore (1984), Hartzell et al. (1999, 2002), Iglesias et al. (2002), Luco (1985), Mahdyiar
(2002), McGuire and Hanks (1980), McGuire et al. (1984), Papageorgiou and Aki (1983b),
Schneider and Silva (2000), Schneider et al. (1993), Silva and Wong (1992), Silva et al.
(1991), Singh et al. (1989), Vetter et al. (1996), Wennerberg (1996), Wong and Silva (1990,
1993, 1994), Wong et al. (1993), Youngs and Silva (1992)

Central and Eastern North America

Atkinson (1984, 1989, 1990), Atkinson and Beresnev (1998, 2002), Atkinson and Boore
(1987, 1990, 1995, 1997a, 1998), Atkinson and Hanks (1995), Atkinson and Somerville
(1994), Beresnev and Atkinson (1999), Bollinger et al. (1993), Boore (1989a), Boore and
Atkinson (1987), Boore and Joyner (1991), Campbell (2002), Chapman et al. (1990), EPRI
(1993), Frankel et al. (1996), Greig and Atkinson (1993), Hanks and Johnston (1992), Harik
et al. (1997), Herrmann and Akinci (2000), Hwang (2001), Hwang and Huo (1994, 1997),
Hwang et al. (1997, 2001a, 2001b), Kumar (2000), Silva et al. (1989), Toro (1985), Toro
and McGuire (1987), Toro et al. (1988, 1992, 1997), Wen and Wu (2001)

Other Parts of the World or Several Regions Combined

Akinci et al. (2001), ASCE (2000), Atkinson and Greig (1994), Berardi et al. (1999),
Beresnev and Atkinson (2002), Boore (1986b), Castro et al. (2001), Chen and Atkinson
(2002), Chernov and Sokolov (1999), De Natale et al. (1988), Faccioli (1986), Hartzell
and Heaton (1988), Harmsen (2002), Hlatywayo (1997), Malagnini and Herrmann (2000),
Malagnini et al. (2000), Margaris and Boore (1998), Margaris and Hatzidimitriou (2002),
Margaris and Papazachos (1999), McGuire (1984), Ólafsson et al. (1998), Miyake et al.
(2001), Pitarka et al. (2000, 2002), Roumelioti and Kiratzi (2002), Rovelli et al. (1988,
1991, 1994a, 1994b), Satoh (2002), Satoh et al. (1997), Scherbaum (1994), Scherbaum
et al. (1994), Silva(1997), Silva and Costantino (1999), Silva and Darragh (1995), Silva
and Green (1989), Silva et al. (2000a, 2000b, 2002), Singh et al. (1999, 2002), Sokolov
(1997, 1998, 2000a, 2000b), Sokolov et al. (2000, 2001), Suzuki et al. (1998), Tremblay and
Atkinson (2001), Tsai (1997, 1998a, 1998b), Wong et al. (1991)
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Figure Captions

Figure 1. Basis for stochastic method. Radiated energy described by the spectra in
the upper part of the figure is assumed to be distributed randomly over a duration equal
to the inverse of the lower corner frequency (f0). Each time series is one realization of
the random process for the actual spectrum shown. When plotted on a log scale, the
levels of the low-frequency part of the spectra are directly proportional to the logarithm
of the seismic moment and thus to the moment magnitude. Various peak ground-motion
parameters (such as response spectra, instrument response, and velocity and acceleration)
can be obtained by averaging the parameters computed from each member of a suite of
acceleration time series or more simply by using random vibration theory, working directly
with the spectra. The examples in this figure came from an actual simulation and are not
sketched in by hand.

Figure 2. Source scaling for single-corner-frequency ω-square spectral shape. For
constant stress drop M0f

3
0 is a constant (Aki, 1967), and this dependence of the corner

frequency f0 on the moment M0 (given by the shaded line) determines the scaling of the
spectral shapes.

Figure 3. Fourier spectrum of acceleration at R = 1 km, according to the source
spectral models given in Tables 2 and 3 (from Atkinson and Boore, 1998). (The roll-off at
high frequencies is produced by using equation (19) with fmax = 50 Hz.)

Figure 4. Synthetic seismograms for a 4-layer model of the crust in the central United
States, showing the complexity of the waveforms and duration due to reverberations within
the crust (written commun., R. Herrmann, 2000).

Figure 5. The geometrical spreading function used in applications in central and
eastern North America by Atkinson and Boore (1995) and Frankel et al. (1996).

Figure 6. Observed inverse shear-wave Q from Aki (Aki, 1980, summarized by
Cormier, 1982); the heavy solid line is an “eyeball” average of the observations. (Figure
modified from Boore, 1984).

Figure 7. Illustration of the specification of Q(f): it is made up of three lines in
log–log space. The lines shown are an approximation of the Q(f) function shown in the
previous figure.

Figure 8. Observed attenuation of motions with distance in eastern North America for
a narrow range of magnitudes (data: written commun. from G. Atkinson, 2000), along with
the combination of geometrical spreading and whole path attenuation used by Atkinson
and Boore (1995) and Frankel et al. (1996) in simulating ground motions in central and
eastern North America.
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Figure 9. Observed duration (after subtracting source duration) from earthquakes in
eastern North America. The data were used by Atkinson (1993) and Atkinson and Boore
(1995) to define path-dependent durations for use in stochastic method simulations. The
solid circles are averages within 15-km-wide bins, and the error bars are plus and minus
one standard error of the mean. The three-part solid line is the duration function used by
Atkinson and Boore (1995) in simulations of ground motions in eastern North America.

Figure 10. S-wave velocity versus depth used by Boore and Joyner (1997) for
computing amplifications on generic “soft” rock sites (adapted from Boore and Joyner,
1997).

Figure 11. Amplification vs. frequency. The wide shaded line is computed using the
root-impedance approximation and the velocity profile shown in the preceeding figure. The
results from plane SH waves incident at the base of a 8-km thick stack of constant-velocity
layers (with Q = 10000) closely approximating the continuous shear-wave velocity in the
previous figure are shown by the light lines for angles of incidence of 30 and 45 degrees;
the results were computed from the Haskell matrix method, as implemented by program
Rattle by C. Mueller. The segmented-line function used in the stochastic method is given
by lines joining the plus symbols. (Adapted from Boore and Joyner, 1997).

Figure 12. Combined effect of the site amplification in the previous figure and path-
independent diminution. (Adapted from Boore and Joyner, 1997).

Figure 13. The product of Fourier spectral amplifications and the diminution factor
exp(−πκ0f) for various site conditions, as measured by the average shear-wave velocity in
the upper 30 m. (From Boore and Joyner, 1997).

Figure 14. Basis of the time-domain procedure for simulating ground motions using
the stochastic method. These are from an actual simulation, using the AS00 model as
specified in Tables 2, 3, and 4. An acausal low-cut filter with a cut-off frequency of 0.02 Hz
was applied to the acceleration time series. Various other measures of ground motion, such
as peak velocity, peak displacement, Arias intensity, and response spectral amplitudes, can
be computed from the simulated acceleration.

Figure 15. Exponential window and the variables controlling its shape.

Figure 16. Comparison of waveforms and response spectra for time-domain simula-
tions using the box and the exponential windows to shape the noise. The response spectra
are averages from a suite of 640 simulations, whereas the time series are for a single real-
ization. The simulations are for the AS00 model, as specified in Table 2, 3, and 4.
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Figure 17. Time series for magnitude 4 and 7 earthquakes. The acceleration was
computed using the stochastic method and the AS00 model, as specified in Tables 2, 3,
and 4, and the velocity and response of a Wood-Anderson seismometer were obtained from
the simulated accelerations; an acausal low-cut filter with a cut-off frequency of 0.02 Hz was
applied to the acceleration time series before the velocity and Wood-Anderson response
were computed.

Figure 18. The model (target) spectrum, the spectrum from a single realization, and
the spectrum from an average of 640 realizations. Any one realization can differ markedly
from the model spectrum, but on average the simulations match the model spectrum. The
simulations are for the AS00 model, as specified in Table 2, 3, and 4.

Figure 19. Simulated acceleration time series and computed response of 10.0-sec,
5-percent-damped oscillator for magnitude 4 and 7 earthquakes at 10 km. Because the
relative shape is important, each trace has been scaled individually (the actual amplitudes
are given to the left of the y-axis— acceleration in cm/s2 and oscillator response in cm).
The simulations are for the AS00 model, as specified in Table 2, 3, and 4. The accelerations
differ from those in Figure 17 because the seeds used in generating the random numbers
needed in the simulations were not the same.

Figure 20. Comparison of simulations using the time-domain calculations with various
values of the number of simulations, with a different seed for the random-number generator
for each set of simulations. The random-vibration results are shown for comparison, using
both the Boore and Joyner (1984) and Liu and Pezeshk (1999) modification of random-
vibration theory for oscillator response. The calculations are for magnitude 4 at 10 km.
The simulations are for the AS00 model, as specified in Table 2, 3, and 4.

Figure 21. Comparison of simulations using the time-domain calculations with various
values of the number of simulations, with a different seed for the random-number generator
for each set of simulations. The random-vibration results are shown for comparison, using
both the Boore and Joyner (1984) and Liu and Pezeshk (1999) modification of random-
vibration theory for oscillator response. The calculations are for magnitude 7 at 10 km.
The simulations are for the AS00 model, as specified in Table 2, 3, and 4.

Figure 22. 5%-damped, pseudo-velocity response spectra (PSV ) for a small
earthquake (M = 5.6) and a large earthquake (M = 7.5) (heavy solid lines). The PSV
for the large event has been derived from the small event assuming Atkinson and Boore
(1998) (AB98) source models. Also shown are the predictions from two regression analyses
(dashed lines) and from stochastic-method simulations (solid circles). The light solid line
for the M = 5.6 event was computed from the S-wave portion of the event (the first 35
sec of the recorded motion). (Modified from Boore, 1999).
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Figure 1. Basis for stochastic method. Radiated energy described by the spectra in
the upper part of the figure is assumed to be distributed randomly over a duration equal
to the inverse of the lower corner frequency (f0). Each time series is one realization of
the random process for the actual spectrum shown. When plotted on a log scale, the
levels of the low-frequency part of the spectra are directly proportional to the logarithm
of the seismic moment and thus to the moment magnitude. Various peak ground-motion
parameters (such as response spectra, instrument response, and velocity and acceleration)
can be obtained by averaging the parameters computed from each member of a suite of
acceleration time series or more simply by using random vibration theory, working directly
with the spectra. The examples in this figure came from an actual simulation and are not
sketched in by hand.
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Figure 4. Synthetic seismograms for a 4-layer model of the crust in the central United
States, showing the complexity of the waveforms and duration due to reverberations within
the crust (written commun., R. Herrmann, 2000).
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modified from Boore, 1984).
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Figure 8. Observed attenuation of motions with distance in eastern North America for
a narrow range of magnitudes (data: written commun. from G. Atkinson, 2000), along with
the combination of geometrical spreading and whole path attenuation used by Atkinson
and Boore (1995) and Frankel et al. (1996) in simulating ground motions in central and
eastern North America.
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Figure 9. Observed duration (after subtracting source duration) from earthquakes in
eastern North America. The data were used by Atkinson (1993) and Atkinson and Boore
(1995) to define path-dependent durations for use in stochastic method simulations. The
solid circles are averages within 15-km-wide bins, and the error bars are plus and minus
one standard error of the mean. The three-part solid line is the duration function used by
Atkinson and Boore (1995) in simulations of ground motions in eastern North America.
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Figure 10. S-wave velocity versus depth used by Boore and Joyner (1997) for
computing amplifications on generic “soft” rock sites (adapted from Boore and Joyner,
1997).
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Figure 11. Amplification vs. frequency. The wide shaded line is computed using the
root-impedance approximation and the velocity profile shown in the preceeding figure. The
results from plane SH waves incident at the base of a 8-km thick stack of constant-velocity
layers (with Q = 10000) closely approximating the continuous shear-wave velocity in the
previous figure are shown by the light lines for angles of incidence of 30 and 45 degrees;
the results were computed from the Haskell matrix method, as implemented by program
Rattle by C. Mueller. The segmented-line function used in the stochastic method is given
by lines joining the plus symbols. (Adapted from Boore and Joyner, 1997).
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Figure 14. Basis of the time-domain procedure for simulating ground motions using
the stochastic method. These are from an actual simulation, using the AS00 model as
specified in Tables 2, 3, and 4. An acausal low-cut filter with a cut-off frequency of 0.02 Hz
was applied to the acceleration time series. Various other measures of ground motion, such
as peak velocity, peak displacement, Arias intensity, and response spectral amplitudes, can
be computed from the simulated acceleration.
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Figure 15. Exponential window and the variables controlling its shape.
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Figure 16. Comparison of waveforms and response spectra for time-domain simula-
tions using the box and the exponential windows to shape the noise. The response spectra
are averages from a suite of 640 simulations, whereas the time series are for a single real-
ization. The simulations are for the AS00 model, as specified in Table 2, 3, and 4.
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Figure 17. Time series for magnitude 4 and 7 earthquakes. The acceleration was
computed using the stochastic method and the AS00 model, as specified in Tables 2, 3,
and 4, and the velocity and response of a Wood-Anderson seismometer were obtained from
the simulated accelerations; an acausal low-cut filter with a cut-off frequency of 0.02 Hz was
applied to the acceleration time series before the velocity and Wood-Anderson response
were computed.
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Figure 18. The model (target) spectrum, the spectrum from a single realization, and
the spectrum from an average of 640 realizations. Any one realization can differ markedly
from the model spectrum, but on average the simulations match the model spectrum. The
simulations are for the AS00 model, as specified in Table 2, 3, and 4.
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Figure 19. Simulated acceleration time series and computed response of 10.0-sec,
5-percent-damped oscillator for magnitude 4 and 7 earthquakes at 10 km. Because the
relative shape is important, each trace has been scaled individually (the actual amplitudes
are given to the left of the y-axis— acceleration in cm/s2 and oscillator response in cm).
The simulations are for the AS00 model, as specified in Table 2, 3, and 4. The accelerations
differ from those in Figure 17 because the seeds used in generating the random numbers
needed in the simulations were not the same.



** Pure and Applied Geophysics (in press) **

Period (sec)

10-1 100 101

ps
v

(c
m

/s
)

0.01

0.02

0.1

0.2

1

2

Random Vibration, Boore & Joyner

Time Domain: 10 runs

Time Domain: 40 runs

Time Domain: 160 runs

Time Domain: 640 runs

Random Vibration, Liu & Pezeshk

Feb 21, 2001 3:44:12 pm

C:\AKI_SYMP\NSIMS_M4.GRA

C:\AKI_SYMP\NSIMS_M4.DT

M = 4.0, R = 10 km

Figure 20. Comparison of simulations using the time-domain calculations with various
values of the number of simulations, with a different seed for the random-number generator
for each set of simulations. The random-vibration results are shown for comparison, using
both the Boore and Joyner (1984) and Liu and Pezeshk (1999) modification of random-
vibration theory for oscillator response. The calculations are for magnitude 4 at 10 km.
The simulations are for the AS00 model, as specified in Table 2, 3, and 4.
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Figure 21. Comparison of simulations using the time-domain calculations with various
values of the number of simulations, with a different seed for the random-number generator
for each set of simulations. The random-vibration results are shown for comparison, using
both the Boore and Joyner (1984) and Liu and Pezeshk (1999) modification of random-
vibration theory for oscillator response. The calculations are for magnitude 7 at 10 km.
The simulations are for the AS00 model, as specified in Table 2, 3, and 4.
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Figure 22. 5%-damped, pseudo-velocity response spectra (PSV ) for a small
earthquake (M = 5.6) and a large earthquake (M = 7.5) (heavy solid lines). The PSV
for the large event has been derived from the small event assuming Atkinson and Boore
(1998) (AB98) source models. Also shown are the predictions from two regression analyses
(dashed lines) and from stochastic-method simulations (solid circles). The light solid line
for the M = 5.6 event was computed from the S-wave portion of the event (the first 35
sec of the recorded motion). (Modified from Boore, 1999).


